

 Navigation

 	
 index

 	
 modules |

 	flask-S3 0.1 documentation

Flask-S3

Flask-S3 allows you to easily serve all your Flask [http://flask.pocoo.org/] application’s
static assets from Amazon S3 [http://aws.amazon.com/s3], without having to modify your
templates.

How it works

Flask-S3 has two main functions:

	Walk through your application’s static folders, gather all your
static assets together, and upload them to a bucket of your choice
on S3;

	Replace the URLs that Flask’s flask.url_for() [http://flask.pocoo.org/docs/api/#flask.url_for] function would
insert into your templates, with URLs that point to the static
assets in your S3 bucket.

The process of gathering and uploading your static assets to S3 need
only be done once, and your application does not need to be running for
it to work. The location of the S3 bucket can be inferred from Flask-S3
settings specified in your Flask application, therefore when your
application is running there need not be any communication between the
Flask application and Amazon S3.

Internally, every time url_for is called in one of your
application’s templates, flask_s3.url_for is instead invoked. If the
endpoint provided is deemed to refer to static assets, then the S3 URL
for the asset specified in the filename argument is instead returned.
Otherwise, flask_s3.url_for passes the call on to flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

Installation

If you use pip then installation is simply:

$ pip install flask-s3

or, if you want the latest github version:

$ pip install git+git://github.com/e-dard/flask-s3.git

You can also install Flask-S3 via Easy Install:

$ easy_install flask-s3

Dependencies

Aside from the obvious dependency of Flask itself, Flask-S3 makes use of
the boto [http://docs.pythonboto.org/en/latest/] library for uploading assets to Amazon S3. Note:
Flask-S3 currently only supports applications that use the jinja2 [http://jinja.pocoo.org/docs/]
templating system.

Using Flask-S3

Flask-S3 is incredibly simple to use. In order to start serving your
Flask application’s assets from Amazon S3, the first thing to do is let
Flask-S3 know about your flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

from flask import Flask
from flask_s3 import FlaskS3

app = Flask(__name__)
app.config['S3_BUCKET_NAME'] = 'mybucketname'
s3 = FlaskS3(app)

In many cases, however, one cannot expect a Flask instance to be ready
at import time, and a common pattern is to return a Flask instance from
within a function only after other configuration details have been taken
care of. In these cases, Flask-S3 provides a simple function,
init_app, which takes your application as an argument.

from flask import Flask
from flask_s3 import FlaskS3

s3 = FlaskS3()

def start_app():
 app = Flask(__name__)
 s3.init_app(app)
 return app

In terms of getting your application to use external Amazon S3 URLs when
referring to your application’s static assets, passing your Flask
object to the FlaskS3 object is all that needs to be done. Once your
app is running, any templates that contained relative static asset
locations, will instead contain hosted counterparts on Amazon S3.

Uploading your Static Assets

You only need to upload your static assets to Amazon S3 once. Of course,
if you add or modify your existing assets then you will need to repeat
the uploading process.

Uploading your static assets from a Python console is as simple as
follows.

>>> import flask_s3
>>> from my_application import app
>>> flask_s3.create_all(app)
>>>

Flask-S3 will proceed to walk through your application’s static assets,
including those belonging to registered blueprints [http://flask.pocoo.org/docs/blueprints/], and upload them
to your Amazon S3 bucket.

Static Asset URLs

Within your bucket on S3, Flask-S3 replicates the static file hierarchy
defined in your application object and any registered blueprints. URLs
generated by Flask-S3 will look like the following:

/static/foo/style.css becomes
https://mybucketname.s3.amazonaws.com/static/foo/style.css, assuming
that mybucketname is the name of your S3 bucket, and you have chosen
to have assets served over HTTPS.

Flask-S3 Options

Within your Flask application’s settings you can provide the following
settings to control the behvaiour of Flask-S3. None of the settings are
required, but if not present, some will need to be provided when
uploading assets to S3.

	AWS_ACCESS_KEY_ID
	Your AWS access key. This does not need to be
stored in your configuration if you choose to pass
it directly when uploading your assets.

	AWS_SECRET_ACCESS_KEY
	Your AWS secret key. As with the access key, this
need not be stored in your configuration if passed
in to create_all.

	S3_BUCKET_DOMAIN
	The domain part of the URI for your S3 bucket. You
probably won’t need to change this.
Default: u's3.amazonaws.com'

	S3_BUCKET_NAME
	The desired name for your Amazon S3 bucket. Note:
the name will be visible in all your assets’ URLs.

	S3_CACHE_CONTROL
	This sets the value of the Cache-Control header that
is set in the metadata when S3_USE_CACHE_CONTRL is
set to True [http://docs.python.org/library/constants.html#True].

	S3_USE_CACHE_CONTROL
	Specifies whether or not to set the metadata for the
Cache-Control headers.
Default: False [http://docs.python.org/library/constants.html#False]

	S3_USE_HTTPS
	Specifies whether or not to serve your assets
stored in S3 over HTTPS.
Default: True [http://docs.python.org/library/constants.html#True]

	USE_S3
	This setting allows you to toggle whether Flask-S3
is active or not. When set to False [http://docs.python.org/library/constants.html#False] your
application’s templates will revert to including
static asset locations determined by
flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].
Default: True [http://docs.python.org/library/constants.html#True]

	USE_S3_DEBUG
	By default, Flask-S3 will be switched off when
running your application in debug [http://flask.pocoo.org/docs/config/#configuration-basics] mode, so that
your templates include static asset locations
specified by flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for]. If you wish to enable
Flask-S3 in debug mode, set this value to True [http://docs.python.org/library/constants.html#True].
Note: if USE_S3 is set to False [http://docs.python.org/library/constants.html#False] then
templates will always include asset locations
specified by flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

API Documentation

Flask-S3 is a very simple extension. The few exposed objects, methods
and functions are as follows.

The FlaskS3 Object

	
class flask_s3.FlaskS3(app=None)[source]

	The FlaskS3 object allows your application to use Flask-S3.

When initialising a FlaskS3 object you may optionally provide your
flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object if it is ready. Otherwise,
you may provide it later by using the init_app() method.

	Parameters:	app (flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] or None) – optional flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object

	
init_app(app)[source]

	An alternative way to pass your flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application
object to Flask-S3. init_app() also takes care of some
default settings.

	Parameters:	app – the flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

S3 Interaction

	
flask_s3.create_all(app, user=None, password=None, bucket_name=None, location='', include_hidden=False)[source]

	Uploads of the static assets associated with a Flask application to
Amazon S3.

All static assets are identified on the local filesystem, including
any static assets associated with registered blueprints. In turn,
each asset is uploaded to the bucket described by bucket_name. If
the bucket does not exist then it is created.

Flask-S3 creates the same relative static asset folder structure on
S3 as can be found within your Flask application.

Many of the optional arguments to create_all can be specified
instead in your application’s configuration using the Flask-S3
configuration variables.

	Parameters:	
	app – a flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

	user (basestring [http://docs.python.org/library/functions.html#basestring] or None) – an AWS Access Key ID. You can find this key in the
Security Credentials section of your AWS account.

	password (basestring [http://docs.python.org/library/functions.html#basestring] or None) – an AWS Secret Access Key. You can find this key in
the Security Credentials section of your AWS
account.

	bucket_name (basestring [http://docs.python.org/library/functions.html#basestring] or None) – the name of the bucket you wish to server your
static assets from. Note: while a valid
character, it is recommended that you do not
include periods in bucket_name if you wish to
serve over HTTPS. See Amazon’s bucket
restrictions [http://docs.amazonwebservices.com/AmazonS3/latest/dev/BucketRestrictions.html] for more details.

	location (basestring [http://docs.python.org/library/functions.html#basestring] or None) – the AWS region to host the bucket in; an empty
string indicates the default region should be used,
which is the US Standard region. Possible location
values include: 'DEFAULT', 'EU', 'USWest',
'APSoutheast'

	include_hidden (bool [http://docs.python.org/library/functions.html#bool]) – by default Flask-S3 will not upload hidden
files. Set this to true to force the upload of hidden files.

	
flask_s3.url_for(endpoint, **values)[source]

	Generates a URL to the given endpoint.

If the endpoint is for a static resource then an Amazon S3 URL is
generated, otherwise the call is passed on to flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

Because this function is set as a jinja environment variable when
FlaskS3.init_app is invoked, this function replaces
flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for] in templates automatically. It is unlikely that this
function will need to be directly called from within your
application code, unless you need to refer to static assets outside
of your templates.

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	flask-S3 0.1 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flask_s3	

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	flask-S3 0.1 documentation

Index

 C
 | F
 | I
 | U

C

 	

 	create_all() (in module flask_s3)

F

 	

 	flask_s3 (module)

 	

 	FlaskS3 (class in flask_s3)

I

 	

 	init_app() (flask_s3.FlaskS3 method)

U

 	

 	url_for() (in module flask_s3)

 Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		flask-S3 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		flask-S3 0.1 documentation »

 All modules for which code is available

		flask_s3

 © Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/up.png

_modules/flask_s3.html

 Navigation

 		
 index

 		
 modules |

 		flask-S3 0.1 documentation »

 		Module code »

 Source code for flask_s3

import os
import logging
from collections import defaultdict

from flask import url_for as flask_url_for
from flask import current_app
from boto.s3.connection import S3Connection
from boto.exception import S3CreateError
from boto.s3.key import Key

logger = logging.getLogger('flask_s3')

[docs]def url_for(endpoint, **values):
 """
 Generates a URL to the given endpoint.

 If the endpoint is for a static resource then an Amazon S3 URL is
 generated, otherwise the call is passed on to `flask.url_for`.

 Because this function is set as a jinja environment variable when
 `FlaskS3.init_app` is invoked, this function replaces
 `flask.url_for` in templates automatically. It is unlikely that this
 function will need to be directly called from within your
 application code, unless you need to refer to static assets outside
 of your templates.
 """
 app = current_app
 if 'S3_BUCKET_NAME' not in app.config:
 raise ValueError("S3_BUCKET_NAME not found in app configuration.")

 if app.debug and not app.config['USE_S3_DEBUG']:
 return flask_url_for(endpoint, **values)

 if endpoint == 'static' or endpoint.endswith('.static'):
 scheme = 'http'
 if app.config['S3_USE_HTTPS']:
 scheme = 'https'
 bucket_path = '%s.%s' % (app.config['S3_BUCKET_NAME'],
 app.config['S3_BUCKET_DOMAIN'])
 urls = app.url_map.bind(bucket_path, url_scheme=scheme)
 return urls.build(endpoint, values=values, force_external=True)
 return flask_url_for(endpoint, **values)

def _bp_static_url(blueprint):
 """ builds the absolute url path for a blueprint's static folder """
 u = u'%s%s' % (blueprint.url_prefix or '', blueprint.static_url_path or '')
 return u

def _gather_files(app, hidden):
 """ Gets all files in static folders and returns in dict."""
 dirs = [(unicode(app.static_folder), app.static_url_path)]
 if hasattr(app, 'blueprints'):
 blueprints = app.blueprints.values()
 bp_details = lambda x: (x.static_folder, _bp_static_url(x))
 dirs.extend([bp_details(x) for x in blueprints if x.static_folder])

 valid_files = defaultdict(list)
 for static_folder, static_url_loc in dirs:
 if not os.path.isdir(static_folder):
 logger.warning("WARNING - [%s does not exist]" % static_folder)
 else:
 logger.debug("Checking static folder: %s" % static_folder)
 for root, _, files in os.walk(static_folder):
 files = [os.path.join(root, x) \
 for x in files if hidden or x[0] != '.']
 if files:
 valid_files[(static_folder, static_url_loc)].extend(files)
 return valid_files

def _path_to_relative_url(path):
 """ Converts a folder and filename into a ralative url path """
 return os.path.splitdrive(path)[1].replace('\\', '/')

def _static_folder_path(static_url, static_folder, static_asset):
 """
 Returns a path to a file based on the static folder, and not on the
 filesystem holding the file.

 Returns a path relative to static_url for static_asset
 """
 # first get the asset path relative to the static folder.
 # static_asset is not simply a filename because it could be
 # sub-directory then file etc.
 if not static_asset.startswith(static_folder):
 raise ValueError("%s startic asset must be under %s static folder" %
 (static_asset, static_folder))
 rel_asset = static_asset[len(static_folder):]
 # Now bolt the static url path and the relative asset location together
 return u'%s/%s' % (static_url.rstrip('/'), rel_asset.lstrip('/'))

def _write_files(app, static_url_loc, static_folder, files, bucket,
 ex_keys=None):
 """ Writes all the files inside a static folder to S3. """
 for file_path in files:
 asset_loc = _path_to_relative_url(file_path)
 key_name = _static_folder_path(static_url_loc, static_folder,
 asset_loc)
 msg = "Uploading %s to %s as %s" % (file_path, bucket, key_name)
 logger.debug(msg)
 if ex_keys and key_name in ex_keys:
 logger.debug("%s excluded from upload" % key_name)
 else:
 k = Key(bucket=bucket, name=key_name)
 if (app.config['S3_USE_CACHE_CONTROL'] and
 'S3_CACHE_CONTROL' in app.config):
 k.set_metadata('Cache-Control', app.config['S3_CACHE_CONTROL'])
 k.set_contents_from_filename(file_path)
 k.make_public()

def _upload_files(app, files_, bucket):
 for (static_folder, static_url), names in files_.iteritems():
 _write_files(app, static_url, static_folder, names, bucket)

[docs]def create_all(app, user=None, password=None, bucket_name=None,
 location='', include_hidden=False):
 """
 Uploads of the static assets associated with a Flask application to
 Amazon S3.

 All static assets are identified on the local filesystem, including
 any static assets associated with *registered* blueprints. In turn,
 each asset is uploaded to the bucket described by `bucket_name`. If
 the bucket does not exist then it is created.

 Flask-S3 creates the same relative static asset folder structure on
 S3 as can be found within your Flask application.

 Many of the optional arguments to `create_all` can be specified
 instead in your application's configuration using the Flask-S3
 `configuration`_ variables.

 :param app: a :class:`flask.Flask` application object.

 :param user: an AWS Access Key ID. You can find this key in the
 Security Credentials section of your AWS account.
 :type user: `basestring` or None

 :param password: an AWS Secret Access Key. You can find this key in
 the Security Credentials section of your AWS
 account.
 :type password: `basestring` or None

 :param bucket_name: the name of the bucket you wish to server your
 static assets from. **Note**: while a valid
 character, it is recommended that you do not
 include periods in bucket_name if you wish to
 serve over HTTPS. See Amazon's `bucket
 restrictions`_ for more details.
 :type bucket_name: `basestring` or None

 :param location: the AWS region to host the bucket in; an empty
 string indicates the default region should be used,
 which is the US Standard region. Possible location
 values include: `'DEFAULT'`, `'EU'`, `'USWest'`,
 `'APSoutheast'`
 :type location: `basestring` or None

 :param include_hidden: by default Flask-S3 will not upload hidden
 files. Set this to true to force the upload of hidden files.
 :type include_hidden: `bool`

 .. _bucket restrictions: http://docs.amazonwebservices.com/AmazonS3\
 /latest/dev/BucketRestrictions.html

 """
 if user is None and 'AWS_ACCESS_KEY_ID' in app.config:
 user = app.config['AWS_ACCESS_KEY_ID']
 if password is None and 'AWS_SECRET_ACCESS_KEY' in app.config:
 password = app.config['AWS_SECRET_ACCESS_KEY']
 if bucket_name is None and 'S3_BUCKET_NAME' in app.config:
 bucket_name = app.config['S3_BUCKET_NAME']
 if not bucket_name:
 raise ValueError("No bucket name provided.")
 # build list of static files
 all_files = _gather_files(app, include_hidden)
 logger.debug("All valid files: %s" % all_files)
 conn = S3Connection(user, password) # connect to s3
 # get_or_create bucket
 try:
 bucket = conn.create_bucket(bucket_name, location=location)
 bucket.make_public(recursive=True)
 except S3CreateError as e:
 raise e
 _upload_files(app, all_files, bucket)

[docs]class FlaskS3(object):
 """
 The FlaskS3 object allows your application to use Flask-S3.

 When initialising a FlaskS3 object you may optionally provide your
 :class:`flask.Flask` application object if it is ready. Otherwise,
 you may provide it later by using the :meth:`init_app` method.

 :param app: optional :class:`flask.Flask` application object
 :type app: :class:`flask.Flask` or None
 """
 def __init__(self, app=None):
 if app is not None:
 self.init_app(app)

[docs] def init_app(self, app):
 """
 An alternative way to pass your :class:`flask.Flask` application
 object to Flask-S3. :meth:`init_app` also takes care of some
 default `settings`_.

 :param app: the :class:`flask.Flask` application object.
 """
 defaults = [('S3_USE_HTTPS', True),
 ('USE_S3', True),
 ('USE_S3_DEBUG', False),
 ('S3_BUCKET_DOMAIN', 's3.amazonaws.com'),
 ('S3_USE_CACHE_CONTROL', False)]
 for k, v in defaults:
 app.config.setdefault(k, v)

 if app.config['USE_S3']:
 app.jinja_env.globals['url_for'] = url_for

 © Copyright 2012, Edward Robinson.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

