
flask-s3 Documentation
Release 0.3.2

Edward Robinson

Jul 19, 2017

Contents

1 How it works 3

2 Installation 5
2.1 Dependencies . 5

3 Using Flask-S3 7
3.1 Uploading your Static Assets . 7
3.2 Flask-S3 Options . 8

4 API Documentation 11
4.1 The FlaskS3 Object . 11
4.2 S3 Interaction . 11

Python Module Index 13

i

ii

flask-s3 Documentation, Release 0.3.2

Flask-S3 allows you to easily serve all your Flask application’s static assets from Amazon S3, without having to
modify your templates.

Contents 1

http://flask.pocoo.org/
http://aws.amazon.com/s3

flask-s3 Documentation, Release 0.3.2

2 Contents

CHAPTER 1

How it works

Flask-S3 has two main functions:

1. Walk through your application’s static folders, gather all your static assets together, and upload them to a bucket
of your choice on S3;

2. Replace the URLs that Flask’s flask.url_for() function would insert into your templates, with URLs that
point to the static assets in your S3 bucket.

The process of gathering and uploading your static assets to S3 need only be done once, and your application does not
need to be running for it to work. The location of the S3 bucket can be inferred from Flask-S3 settings specified in
your Flask application, therefore when your application is running there need not be any communication between the
Flask application and Amazon S3.

Internally, every time url_for is called in one of your application’s templates, flask_s3.url_for is instead
invoked. If the endpoint provided is deemed to refer to static assets, then the S3 URL for the asset specified in
the filename argument is instead returned. Otherwise, flask_s3.url_for passes the call on to flask.
url_for.

3

http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/api/#flask.url_for

flask-s3 Documentation, Release 0.3.2

4 Chapter 1. How it works

CHAPTER 2

Installation

If you use pip then installation is simply:

$ pip install flask-s3

or, if you want the latest github version:

$ pip install git+git://github.com/e-dard/flask-s3.git

You can also install Flask-S3 via Easy Install:

$ easy_install flask-s3

Dependencies

Aside from the obvious dependency of Flask itself, Flask-S3 makes use of the boto library for uploading assets to
Amazon S3. Note: Flask-S3 currently only supports applications that use the jinja2 templating system.

5

http://docs.pythonboto.org/en/latest/
http://jinja.pocoo.org/docs/

flask-s3 Documentation, Release 0.3.2

6 Chapter 2. Installation

CHAPTER 3

Using Flask-S3

Flask-S3 is incredibly simple to use. In order to start serving your Flask application’s assets from Amazon S3, the first
thing to do is let Flask-S3 know about your flask.Flask application object.

from flask import Flask
from flask_s3 import FlaskS3

app = Flask(__name__)
app.config['FLASKS3_BUCKET_NAME'] = 'mybucketname'
s3 = FlaskS3(app)

In many cases, however, one cannot expect a Flask instance to be ready at import time, and a common pattern is to
return a Flask instance from within a function only after other configuration details have been taken care of. In these
cases, Flask-S3 provides a simple function, init_app, which takes your application as an argument.

from flask import Flask
from flask_s3 import FlaskS3

s3 = FlaskS3()

def start_app():
app = Flask(__name__)
s3.init_app(app)
return app

In terms of getting your application to use external Amazon S3 URLs when referring to your application’s static
assets, passing your Flask object to the FlaskS3 object is all that needs to be done. Once your app is running, any
templates that contained relative static asset locations, will instead contain hosted counterparts on Amazon S3.

Uploading your Static Assets

You only need to upload your static assets to Amazon S3 once. Of course, if you add or modify your existing assets
then you will need to repeat the uploading process.

7

http://flask.pocoo.org/docs/api/#flask.Flask

flask-s3 Documentation, Release 0.3.2

Uploading your static assets from a Python console is as simple as follows.

>>> import flask_s3
>>> from my_application import app
>>> flask_s3.create_all(app)
>>>

Flask-S3 will proceed to walk through your application’s static assets, including those belonging to registered
blueprints, and upload them to your Amazon S3 bucket.

Static Asset URLs

Within your bucket on S3, Flask-S3 replicates the static file hierarchy defined in your application object and any
registered blueprints. URLs generated by Flask-S3 will look like the following:

/static/foo/style.css becomes https://mybucketname.s3.amazonaws.com/static/foo/
style.css, assuming that mybucketname is the name of your S3 bucket, and you have chosen to have assets
served over HTTPS.

Setting Custom HTTP Headers

To set custom HTTP headers on the files served from S3 specify what headers you want to use with the
FLASKS3_HEADERS option.

FLASKS3_HEADERS = {
'Expires': 'Thu, 15 Apr 2010 20:00:00 GMT',
'Cache-Control': 'max-age=86400',

}

See Yahoo! more information on how to set good values for your headers.

Flask-S3 Options

Within your Flask application’s settings you can provide the following settings to control the behaviour of Flask-S3.
None of the settings are required, but if not present, some will need to be provided when uploading assets to S3.

8 Chapter 3. Using Flask-S3

http://flask.pocoo.org/docs/blueprints/
http://developer.yahoo.com/performance/rules.html#expires

flask-s3 Documentation, Release 0.3.2

AWS_ACCESS_KEY_IDYour AWS access key. This does not need to be stored in your configuration if you choose
to pass it directly when uploading your assets.

AWS_SECRET_ACCESS_KEYYour AWS secret key. As with the access key, this need not be stored in your configuration
if passed in to create_all.

FLASKS3_BUCKET_DOMAINThe domain part of the URI for your S3 bucket. You probably won’t need to change this.
Default: u's3.amazonaws.com'

FLASKS3_CDN_DOMAINAWS makes it easy to attach CloudFront to an S3 bucket. If you want to use this or another
CDN, set the base domain here. This is distinct from the FLASKS3_BUCKET_DOMAIN
since it will not include the bucket name in the base url.

FLASKS3_BUCKET_NAMEThe desired name for your Amazon S3 bucket. Note: the name will be visible in all your
assets’ URLs.

FLASKS3_REGION The AWS region to host the bucket in; an empty string indicates the default region should
be used, which is the US Standard region. Possible location values include: 'DEFAULT',
'EU', 'USWest', 'APSoutheast'

FLASKS3_URL_STYLESet to 'host' to use virtual-host-style URLs, e.g.
bucketname.s3.amazonaws.com. Set to 'path' to use path-style URLs, e.g.
s3.amazonaws.com/bucketname. Default: 'host'

FLASKS3_USE_HTTPSSpecifies whether or not to serve your assets stored in S3 over HTTPS. Can be overriden
per url, by using the _scheme argument as per usual Flask url_for. Default: True

FLASKS3_ACTIVE This setting allows you to toggle whether Flask-S3 is active or not. When set to False
your application’s templates will revert to including static asset locations determined by
flask.url_for. Default: True Note: if you run your application in debug mode (and
FLASKS3_DEBUG is False - see next item), FLASKS3_ACTIVE will be changed to
False. This allows the FLASKS3_ACTIVE config variable to be the definitive check as
to whether flask_s3.url_for is overriding flask.url_for.

FLASKS3_DEBUG By default, Flask-S3 will be switched off when running your application in debug mode, so
that your templates include static asset locations specified by flask.url_for. If you
wish to enable Flask-S3 in debug mode, set this value to True. Note: if
FLASKS3_ACTIVE is set to False then templates will always include asset locations
specified by flask.url_for.

FLASKS3_HEADERSSets custom headers to be sent with each file to S3. Default: {}
FLASKS3_FILEPATH_HEADERSSets custom headers for files whose filepath matches certain regular expressions. (Note that

this cannot be used for CORS, that must be set per S3 bucket using an XML config string.)
E.g. to add custom metadata when serving text files, set this to: {r'.txt$': ‘
{‘Texted-Up-By’: ‘Mister Foo’}‘ } Default: {}

FLASKS3_ONLY_MODIFIEDOnly upload files that have been modified since last upload to S3. SHA-1 file hashes are
used to compute file changes. You can delete file-hashes from your S3 bucket to force
all files to upload again. Defaults to False.

FLASKS3_GZIP Compress all assets using GZIP and set the corresponding Content-Type and
Content-Encoding headers on the S3 files. Defaults to False.

FLASKS3_GZIP_ONLY_EXTSA list of file extensions that should be gzipped. FLASKS3_GZIP should be True for this
to take effect. If mentioned and non-empty, then only files with the specified extensions are
gzipped. Defaults to empty list, meaning all files will be gzipped. Eg:- ['.js',
'.css'] will gzip only js and css files.

FLASKS3_FORCE_MIMETYPEAlways set the Content-Type header on the S3 files irrespective of gzipping. Defaults to
False.

3.2. Flask-S3 Options 9

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
http://flask.pocoo.org/docs/api/#flask.url_for
https://docs.python.org/2/library/constants.html#True
http://flask.pocoo.org/docs/config/#configuration-basics
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#False
http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/config/#configuration-basics
http://flask.pocoo.org/docs/api/#flask.url_for
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
http://flask.pocoo.org/docs/api/#flask.url_for
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#False

flask-s3 Documentation, Release 0.3.2

10 Chapter 3. Using Flask-S3

CHAPTER 4

API Documentation

Flask-S3 is a very simple extension. The few exposed objects, methods and functions are as follows.

The FlaskS3 Object

class flask_s3.FlaskS3(app=None)
The FlaskS3 object allows your application to use Flask-S3.

When initialising a FlaskS3 object you may optionally provide your flask.Flask application object if it is
ready. Otherwise, you may provide it later by using the init_app() method.

Parameters app (flask.Flask or None) – optional flask.Flask application object

init_app(app)
An alternative way to pass your flask.Flask application object to Flask-S3. init_app() also takes
care of some default settings.

Parameters app – the flask.Flask application object.

S3 Interaction

flask_s3.create_all(app, user=None, password=None, bucket_name=None, location=None, in-
clude_hidden=False, filepath_filter_regex=None, put_bucket_acl=True)

Uploads of the static assets associated with a Flask application to Amazon S3.

All static assets are identified on the local filesystem, including any static assets associated with registered
blueprints. In turn, each asset is uploaded to the bucket described by bucket_name. If the bucket does not
exist then it is created.

Flask-S3 creates the same relative static asset folder structure on S3 as can be found within your Flask applica-
tion.

Many of the optional arguments to create_all can be specified instead in your application’s configuration
using the Flask-S3 configuration variables.

11

http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask
http://flask.pocoo.org/docs/api/#flask.Flask

flask-s3 Documentation, Release 0.3.2

Parameters

• app – a flask.Flask application object.

• user (basestring or None) – an AWS Access Key ID. You can find this key in the
Security Credentials section of your AWS account.

• password (basestring or None) – an AWS Secret Access Key. You can find this key
in the Security Credentials section of your AWS account.

• bucket_name (basestring or None) – the name of the bucket you wish to server your
static assets from. Note: while a valid character, it is recommended that you do not include
periods in bucket_name if you wish to serve over HTTPS. See Amazon’s bucket restrictions
for more details.

• location (basestring or None) – the AWS region to host the bucket in; an empty
string indicates the default region should be used, which is the US Standard region. Pos-
sible location values include: 'DEFAULT', 'EU', 'us-east-1', 'us-west-1',
'us-west-2', 'ap-south-1', 'ap-northeast-2', 'ap-southeast-1',
'ap-southeast-2', 'ap-northeast-1', 'eu-central-1', 'eu-west-1',
'sa-east-1'

• include_hidden (bool) – by default Flask-S3 will not upload hidden files. Set this to
true to force the upload of hidden files.

• filepath_filter_regex (basestring or None) – if specified, then the upload of
static assets is limited to only those files whose relative path matches this regular expression
string. For example, to only upload files within the ‘css’ directory of your app’s static store,
set to r’^css’.

• put_bucket_acl (bool) – by default Flask-S3 will set the bucket ACL to public. Set
this to false to leave the policy unchanged.

flask_s3.url_for(endpoint, **values)
Generates a URL to the given endpoint.

If the endpoint is for a static resource then an Amazon S3 URL is generated, otherwise the call is passed on to
flask.url_for.

Because this function is set as a jinja environment variable when FlaskS3.init_app is invoked, this func-
tion replaces flask.url_for in templates automatically. It is unlikely that this function will need to be
directly called from within your application code, unless you need to refer to static assets outside of your tem-
plates.

12 Chapter 4. API Documentation

http://flask.pocoo.org/docs/api/#flask.Flask
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
http://docs.amazonwebservices.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#bool
http://flask.pocoo.org/docs/api/#flask.url_for
http://flask.pocoo.org/docs/api/#flask.url_for

Python Module Index

f
flask_s3, 3

13

flask-s3 Documentation, Release 0.3.2

14 Python Module Index

Index

C
create_all() (in module flask_s3), 11

F
flask_s3 (module), 1
FlaskS3 (class in flask_s3), 11

I
init_app() (flask_s3.FlaskS3 method), 11

U
url_for() (in module flask_s3), 12

15

	How it works
	Installation
	Dependencies

	Using Flask-S3
	Uploading your Static Assets
	Flask-S3 Options

	API Documentation
	The FlaskS3 Object
	S3 Interaction

	Python Module Index

