

Flask-S3

Flask-S3 allows you to easily serve all your Flask [http://flask.pocoo.org/] application’s
static assets from Amazon S3 [http://aws.amazon.com/s3], without having to modify your
templates.

How it works

Flask-S3 has two main functions:

	Walk through your application’s static folders, gather all your
static assets together, and upload them to a bucket of your choice
on S3;

	Replace the URLs that Flask’s flask.url_for() [http://flask.pocoo.org/docs/api/#flask.url_for] function would
insert into your templates, with URLs that point to the static
assets in your S3 bucket.

The process of gathering and uploading your static assets to S3 need
only be done once, and your application does not need to be running for
it to work. The location of the S3 bucket can be inferred from Flask-S3
settings specified in your Flask application, therefore when your
application is running there need not be any communication between the
Flask application and Amazon S3.

Internally, every time url_for is called in one of your
application’s templates, flask_s3.url_for is instead invoked. If the
endpoint provided is deemed to refer to static assets, then the S3 URL
for the asset specified in the filename argument is instead returned.
Otherwise, flask_s3.url_for passes the call on to flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

Installation

If you use pip then installation is simply:

$ pip install flask-s3

or, if you want the latest github version:

$ pip install git+git://github.com/e-dard/flask-s3.git

You can also install Flask-S3 via Easy Install:

$ easy_install flask-s3

Dependencies

Aside from the obvious dependency of Flask itself, Flask-S3 makes use of
the boto [http://docs.pythonboto.org/en/latest/] library for uploading assets to Amazon S3. Note:
Flask-S3 currently only supports applications that use the jinja2 [http://jinja.pocoo.org/docs/]
templating system.

Using Flask-S3

Flask-S3 is incredibly simple to use. In order to start serving your
Flask application’s assets from Amazon S3, the first thing to do is let
Flask-S3 know about your flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

from flask import Flask
from flask_s3 import FlaskS3

app = Flask(__name__)
app.config['FLASKS3_BUCKET_NAME'] = 'mybucketname'
s3 = FlaskS3(app)

In many cases, however, one cannot expect a Flask instance to be ready
at import time, and a common pattern is to return a Flask instance from
within a function only after other configuration details have been taken
care of. In these cases, Flask-S3 provides a simple function,
init_app, which takes your application as an argument.

from flask import Flask
from flask_s3 import FlaskS3

s3 = FlaskS3()

def start_app():
 app = Flask(__name__)
 s3.init_app(app)
 return app

In terms of getting your application to use external Amazon S3 URLs when
referring to your application’s static assets, passing your Flask
object to the FlaskS3 object is all that needs to be done. Once your
app is running, any templates that contained relative static asset
locations, will instead contain hosted counterparts on Amazon S3.

Uploading your Static Assets

You only need to upload your static assets to Amazon S3 once. Of course,
if you add or modify your existing assets then you will need to repeat
the uploading process.

Uploading your static assets from a Python console is as simple as
follows.

>>> import flask_s3
>>> from my_application import app
>>> flask_s3.create_all(app)
>>>

Flask-S3 will proceed to walk through your application’s static assets,
including those belonging to registered blueprints [http://flask.pocoo.org/docs/blueprints/], and upload them
to your Amazon S3 bucket.

Static Asset URLs

Within your bucket on S3, Flask-S3 replicates the static file hierarchy
defined in your application object and any registered blueprints. URLs
generated by Flask-S3 will look like the following:

/static/foo/style.css becomes
https://mybucketname.s3.amazonaws.com/static/foo/style.css, assuming
that mybucketname is the name of your S3 bucket, and you have chosen
to have assets served over HTTPS.

Setting Custom HTTP Headers

To set custom HTTP headers on the files served from S3 specify what
headers you want to use with the FLASKS3_HEADERS option.

FLASKS3_HEADERS = {
 'Expires': 'Thu, 15 Apr 2010 20:00:00 GMT',
 'Cache-Control': 'max-age=86400',
}

See Yahoo! [http://developer.yahoo.com/performance/rules.html#expires] more information on how to set good values for your headers.

Flask-S3 Options

Within your Flask application’s settings you can provide the following
settings to control the behaviour of Flask-S3. None of the settings are
required, but if not present, some will need to be provided when
uploading assets to S3.

	AWS_ACCESS_KEY_ID
	Your AWS access key. This does not need to be
stored in your configuration if you choose to pass
it directly when uploading your assets.

	AWS_SECRET_ACCESS_KEY
	Your AWS secret key. As with the access key, this
need not be stored in your configuration if passed
in to create_all.

	FLASKS3_BUCKET_DOMAIN
	The domain part of the URI for your S3 bucket. You
probably won’t need to change this.
Default: u's3.amazonaws.com'

	FLASKS3_CDN_DOMAIN
	AWS makes it easy to attach CloudFront to an S3
bucket. If you want to use this or another CDN,
set the base domain here. This is distinct from the
FLASKS3_BUCKET_DOMAIN since it will not include the
bucket name in the base url.

	FLASKS3_BUCKET_NAME
	The desired name for your Amazon S3 bucket. Note:
the name will be visible in all your assets’ URLs.

	FLASKS3_REGION
	The AWS region to host the bucket in; an empty
string indicates the default region should be used,
which is the US Standard region. Possible location
values include: 'DEFAULT', 'EU', 'USWest',
'APSoutheast'

	FLASKS3_URL_STYLE
	Set to 'host' to use virtual-host-style URLs,
e.g. bucketname.s3.amazonaws.com. Set to
'path' to use path-style URLs, e.g.
s3.amazonaws.com/bucketname.
Default: 'host'

	FLASKS3_USE_HTTPS
	Specifies whether or not to serve your assets
stored in S3 over HTTPS.
Can be overriden per url, by using the _scheme
argument as per usual Flask url_for.
Default: True [https://docs.python.org/2/library/constants.html#True]

	FLASKS3_ACTIVE
	This setting allows you to toggle whether Flask-S3
is active or not. When set to False [https://docs.python.org/2/library/constants.html#False] your
application’s templates will revert to including
static asset locations determined by
flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].
Default: True [https://docs.python.org/2/library/constants.html#True]
Note: if you run your application in debug [http://flask.pocoo.org/docs/config/#configuration-basics]
mode (and FLASKS3_DEBUG is False [https://docs.python.org/2/library/constants.html#False] - see next
item), FLASKS3_ACTIVE will be changed to False [https://docs.python.org/2/library/constants.html#False].
This allows the FLASKS3_ACTIVE config variable to
be the definitive check as to whether flask_s3.url_for
is overriding flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

	FLASKS3_DEBUG
	By default, Flask-S3 will be switched off when
running your application in debug [http://flask.pocoo.org/docs/config/#configuration-basics] mode, so that
your templates include static asset locations
specified by flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for]. If you wish to enable
Flask-S3 in debug mode, set this value to True [https://docs.python.org/2/library/constants.html#True].
Note: if FLASKS3_ACTIVE is set to False [https://docs.python.org/2/library/constants.html#False] then
templates will always include asset locations
specified by flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

	FLASKS3_HEADERS
	Sets custom headers to be sent with each file to S3.
Default: {}

	FLASKS3_FILEPATH_HEADERS
	Sets custom headers for files whose filepath matches
certain regular expressions. (Note that this cannot
be used for CORS, that must be set per S3 bucket
using an XML config string.) E.g. to add custom
metadata when serving text files, set this to:
{r'.txt$':
` {‘Texted-Up-By’: ‘Mister Foo’}`
}
Default: {}

	FLASKS3_ONLY_MODIFIED
	Only upload files that have been modified since last
upload to S3. SHA-1 file hashes are used to compute
file changes. You can delete file-hashes from
your S3 bucket to force all files to upload again.
Defaults to False [https://docs.python.org/2/library/constants.html#False].

	FLASKS3_GZIP
	Compress all assets using GZIP and set the
corresponding Content-Type and Content-Encoding
headers on the S3 files. Defaults to False [https://docs.python.org/2/library/constants.html#False].

	FLASKS3_GZIP_ONLY_EXTS
	A list of file extensions that should be gzipped.
FLASKS3_GZIP should be True for this to take effect.
If mentioned and non-empty, then only files with the
specified extensions are gzipped.
Defaults to empty list, meaning all files will be
gzipped.
Eg:- ['.js', '.css'] will gzip only js and css files.

	FLASKS3_FORCE_MIMETYPE
	Always set the Content-Type header on the S3 files
irrespective of gzipping. Defaults to False [https://docs.python.org/2/library/constants.html#False].

API Documentation

Flask-S3 is a very simple extension. The few exposed objects, methods
and functions are as follows.

The FlaskS3 Object

	
class flask_s3.FlaskS3(app=None)

	The FlaskS3 object allows your application to use Flask-S3.

When initialising a FlaskS3 object you may optionally provide your
flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object if it is ready. Otherwise,
you may provide it later by using the init_app() method.

	Parameters:	app (flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] or None) – optional flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object

	
init_app(app)

	An alternative way to pass your flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application
object to Flask-S3. init_app() also takes care of some
default settings.

	Parameters:	app – the flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

S3 Interaction

	
flask_s3.create_all(app, user=None, password=None, bucket_name=None, location=None, include_hidden=False, filepath_filter_regex=None, put_bucket_acl=True)

	Uploads of the static assets associated with a Flask application to
Amazon S3.

All static assets are identified on the local filesystem, including
any static assets associated with registered blueprints. In turn,
each asset is uploaded to the bucket described by bucket_name. If
the bucket does not exist then it is created.

Flask-S3 creates the same relative static asset folder structure on
S3 as can be found within your Flask application.

Many of the optional arguments to create_all can be specified
instead in your application’s configuration using the Flask-S3
configuration variables.

	Parameters:	
	app – a flask.Flask [http://flask.pocoo.org/docs/api/#flask.Flask] application object.

	user (basestring [https://docs.python.org/2/library/functions.html#basestring] or None) – an AWS Access Key ID. You can find this key in the
Security Credentials section of your AWS account.

	password (basestring [https://docs.python.org/2/library/functions.html#basestring] or None) – an AWS Secret Access Key. You can find this key in
the Security Credentials section of your AWS
account.

	bucket_name (basestring [https://docs.python.org/2/library/functions.html#basestring] or None) – the name of the bucket you wish to server your
static assets from. Note: while a valid
character, it is recommended that you do not
include periods in bucket_name if you wish to
serve over HTTPS. See Amazon’s bucket
restrictions [http://docs.amazonwebservices.com/AmazonS3/latest/dev/BucketRestrictions.html] for more details.

	location (basestring [https://docs.python.org/2/library/functions.html#basestring] or None) – the AWS region to host the bucket in; an empty
string indicates the default region should be used,
which is the US Standard region. Possible location
values include: 'DEFAULT', 'EU', 'us-east-1',
'us-west-1', 'us-west-2', 'ap-south-1',
'ap-northeast-2', 'ap-southeast-1',
'ap-southeast-2', 'ap-northeast-1',
'eu-central-1', 'eu-west-1', 'sa-east-1'

	include_hidden (bool [https://docs.python.org/2/library/functions.html#bool]) – by default Flask-S3 will not upload hidden
files. Set this to true to force the upload of hidden files.

	filepath_filter_regex (basestring [https://docs.python.org/2/library/functions.html#basestring] or None) – if specified, then the upload of
static assets is limited to only those files whose relative path
matches this regular expression string. For example, to only
upload files within the ‘css’ directory of your app’s static
store, set to r’^css’.

	put_bucket_acl (bool [https://docs.python.org/2/library/functions.html#bool]) – by default Flask-S3 will set the bucket ACL
to public. Set this to false to leave the policy unchanged.

	
flask_s3.url_for(endpoint, **values)

	Generates a URL to the given endpoint.

If the endpoint is for a static resource then an Amazon S3 URL is
generated, otherwise the call is passed on to flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for].

Because this function is set as a jinja environment variable when
FlaskS3.init_app is invoked, this function replaces
flask.url_for [http://flask.pocoo.org/docs/api/#flask.url_for] in templates automatically. It is unlikely that this
function will need to be directly called from within your
application code, unless you need to refer to static assets outside
of your templates.

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flask_s3	

Index

 C
 | F
 | I
 | U

C

 	
 	create_all() (in module flask_s3)

F

 	
 	flask_s3 (module)

 	
 	FlaskS3 (class in flask_s3)

I

 	
 	init_app() (flask_s3.FlaskS3 method)

U

 	
 	url_for() (in module flask_s3)

 nav.xhtml

 Table of Contents

 		Flask-S3

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

